
  

          JavaScript Events
Peter-Paul Koch (ppk)

http://quirksmode.org
http://twitter.com/ppk

Voices that Matter, 28 April 2009

Hell is other browsers - Sartre

http://quirksmode.org/


  



  

http://quirksmode.org/dom/events/

http://quirksmode.org/dom/events


  

Mouseover

and friends



  

The mouseover event fires when the 
user's mouse enters an element .

The mouseout event fires when the 
user's mouse leaves an element.

Perfect support



  

Dropdown menu <sigh />
<ul>

<li><a href=”#”>Multimedialize</a>
<ul>

<li><a href=”#”>Sound</a></li>
<li><a href=”#”>Java applets</a></li>

</ul></li>
<li><a href=”#”>Ajaxify</a>

<ul>
<li><a href=”#”>Web 2.0</a></li>
<li><a href=”#”>Web 3.0</a></li>
<li><a href=”#”>Web 4.0b</a></li>

</ul></li>
</ul>



  

Dropdown menu <sigh />



  

Dropdown menu <sigh />



  

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onmouseover = mouseOver;
x[i].onmouseout = mouseOut;

}
}

}



  

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onmouseover = mouseOver;
x[i].onmouseout = mouseOut;

}
}

}



  

Dropdown menu <sigh />

Event bubbling has advantages.

var dropdown = {
init: function (dropdown) {

}
}

We don't do this any more. Instead 
we use event delegation.



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

The event bubbles up to the <ul> 
anyway.

So why not handle it at that level?

Saves a lot of event handlers.



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = mouseOver;
dropdown.onmouseout = mouseOut;

}
}

Works in all browsers.



  

Dropdown menu <sigh />

Problem: Every mouseover or 
mouseout event bubbles up.



  

Dropdown menu <sigh />



  

Dropdown menu <sigh />

a.mouseover
a.mouseout and a.mouseover
a.mouseout and a.mouseover
a.mouseout

Fun! 
Event bubbling works. 
As does event delegation.



  

Dropdown menu <sigh />

a.mouseover
a.mouseout and a.mouseover
a.mouseout and a.mouseover
a.mouseout

But has the mouse left the submenu or 
not?!



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}
Development time: about 10 minutes



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

},
mouseOut: function (e) {

if (this mouseout is important) {
this.closeSubMenu();

}
}

}
Development time: about 2 days



  

Dropdown menu <sigh />

How do we do this?

onmouseout, find out which element 
the mouse goes to.

If that element is not a part of the 
submenu, fold the submenu.



  

Dropdown menu <sigh />

How do we do this?

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

Find the element the mouse goes to.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

See whether that element is contained 
by the submenu.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

See whether that element is contained 
by the submenu.

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}



  

Dropdown menu <sigh />

mouseOut: function (e) {
e = e || window.event;
var el = e.relatedTarget || e.toElement;
if (!submenu.contains(el)) {

this.closeSubMenu();
}

}

That's it, right?

<grin type=”evil” />



  

Dropdown menu <sigh />

Wrong!

Suppose someone doesn't use a mouse 
at all,

but the keyboard

how does the menu fold out?



  

Device
independence



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

Doesn't work without a mouse.



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}

We need events that tell us whether 
the user enters or leaves a link.
focus and blur



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = 
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout = 
dropdown.onblur = this.mouseOut;

}
}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = 
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout = 
dropdown.onblur = this.mouseOut;

}
}

Doesn't work.



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = 
dropdown.onfocus = this.mouseOver;

dropdown.onmouseout = 
dropdown.onblur = this.mouseOut;

}
}

Focus and blur don't bubble.



  

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events



  

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when the user initiates a device-
specific action.
mouseover, mouseout, click, keydown, 
keypress



  

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

In general they bubble



  

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Fire when a certain event takes place, 
regardless of how it was initialised.
load, change, submit, focus, blur



  

To bubble or not to bubble

Two kinds of events:
1) Mouse and key events
2) Interface events

Generally don't bubble



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;

}
}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}
Doesn't work.



  

Dropdown menu <sigh />

The HTML elements must be able to 
receive the keyboard focus. 

- links
- form fields



  

Dropdown menu <sigh />

The HTML elements must be able to 
receive the keyboard focus. 

- links
- form fields
- elements with tabindex



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('li');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}



  

Dropdown menu <sigh />

var dropdown = {
init: function (dropdown) {

dropdown.onmouseover = this.mouseOver;
dropdown.onmouseout = this.mouseOut;
var x = dropdown.getElementsByTagName('a');
for (var i=0;i<x.length;i++) {

x[i].onfocus = this.mouseOver;
x[i].onblur = this.mouseOut;

}
}

}



  

Event delegation

So we're stuck with setting a focus and 
blur event on every single link.

Or are we ... ?

In my recent Yahoo! presentation I 
give an outline of the solution.
http://yuiblog.com/blog/2009/04/27/video-ppk-jsevents/



  

More device
independence



  

And what about click?

We're in luck: click also fires when the 
user activates an element by keyboard.

Restriction: 
the element must be able to receive 
the keyboard focus 



  

Separate concepts

Drag-and-drop
uses the mousemove event



  

Separate concepts

Drag-and-drop
uses the mousemove event

and if there's one thing that's 
impossible to emulate with the 
keyboard

it's moving the mouse



  

Separate concepts

Drag-and-drop
uses the mousemove event

How do we make this keyboard 
accessible?

By allowing the user to use the arrow 
keys.
Key events.



  

The key events 



  

keydown
When a key is depressed. 

       Repeats.
keypress

keyup



  

keydown
When a key is depressed. 

       Repeats.
keypress

When a character key is                   
       depressed.

Repeats.
keyup



  

keydown
When a key is depressed. 

       Repeats.
keypress

When a character key is                   
       depressed.

Repeats.
keyup

When a key is released.



  

keydown and keypress



  

keydown only



  

Originally this theory was created 
by  Microsoft.

Safari has copied it.

It's the only theory; Firefox and 
Opera just fire some random 
events.



  

keydown
When a key is depressed. 

       Repeats.
keypress

   When a character key is                     
      depressed.
      Repeats.



  

Which key did my user press?

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}



  

Which key did my user press?

el.onkeydown = function (e) {
e = e || window.event;
var realKey = e.keyCode;

}



  

Separate concepts

Back to the drag-and-drop



  

Separate concepts

Drag-and-drop

We need the keydown event, because 
arrow keys are special keys.



  

Separate concepts

Drag-and-drop

obj.onmousemove = 
obj.onkeydown = moveElement;



  

Separate concepts

Drag-and-drop

obj.onmousemove = 
obj.onkeydown = moveElement;

Doesn't work.



  

Separate concepts

Drag-and-drop

obj.onmousemove = 
obj.onkeydown = moveElement;

Mousemove expects mouse 
coordinates.
The layer moves to these coordinates.



  

Separate concepts

Drag-and-drop

obj.onmousemove = 
obj.onkeydown = moveElement;

The key events expect a keystroke.



  

obj.onkeydown = function (e) {
e = e || window.event;
var key = e.keyCode;
switch (key) {

case 37: // left
case 38: // up
case 39: // right
case 40: // down

return false;
default:

return true;
}

}



  

Separate concepts

But what does “user hits right arrow 
once” mean?

10px? 
50px?
“Move to next receptor element?”
Something else that fits your interface?



  

Separate concepts

Drag-and-drop

We have to program for two totally 
different situations.
We need separate scripts.

obj.onmousemove = moveByMouse;
obj.onkeydown = moveByKeys;



  

Separate concepts

Drag-and-drop

Yes, that's more work.

But if you do it right you've got a 
generic drag and drop module you can 
use anywhere.



  

Separate concepts

Drag-and-drop

Besides, I created a first draft for you.

http://quirksmode.org/js/dragdrop.html

http://quirksmode.org/


  



  

change 



  

The change event fires when the value 
of a form field is changed.

This could be a very useful event; after 
all it fires only when the user actually 
changes something
instead of whenever he focuses on a 
form field



  

- text fields
- select boxes
- checkboxes and radios



  

- text fields
- select boxes
- checkboxes and radios

focus

blur

No change event. The value hasn't 
been modified.



  

- text fields
- select boxes
- checkboxes and radios

focus

blur

Change event. The value has been 
modified.



  

- text fields
- select boxes
- checkboxes and radios

Mouse:

Click on select



  

- text fields
- select boxes
- checkboxes and radios

Mouse:

Click on new option
CHANGE



  

- text fields
- select boxes
- checkboxes and radios

Keyboard:

        focus

Focus on select



  

- text fields
- select boxes
- checkboxes and radios

Keyboard:

        focus               arrow              

Arrow keys to move to other option
CHANGE



  

- text fields
- select boxes
- checkboxes and radios

Arrow keys to move to other option
CHANGE

This is a 
BUG!



  

- text fields
- select boxes
- checkboxes and radios

Keyboard:

        focus               arrow              

Arrow keys to move to other option



  

- text fields
- select boxes
- checkboxes and radios

Keyboard:

        focus               arrow                 blur

Blur select box.
CHANGE



  

- text fields
- select boxes
- checkboxes and radios

       click

CHANGE when the checked property 
changes.



  

- text fields
- select boxes
- checkboxes and radios

       click              

...



  

- text fields
- select boxes
- checkboxes and radios

       click              blur

CHANGE when the element loses the 
focus.



  

- text fields
- select boxes
- checkboxes and radios

CHANGE when the element loses the 
focus.

This is a 
BUG!



  

http://quirksmode.org/dom/events/

http://quirksmode.org/dom/events


  

Questions?

Ask away.

Or ask me on Twitter
http://twitter.com/ppk
or on my site
http://quirksmode.org


